
綠能與環境

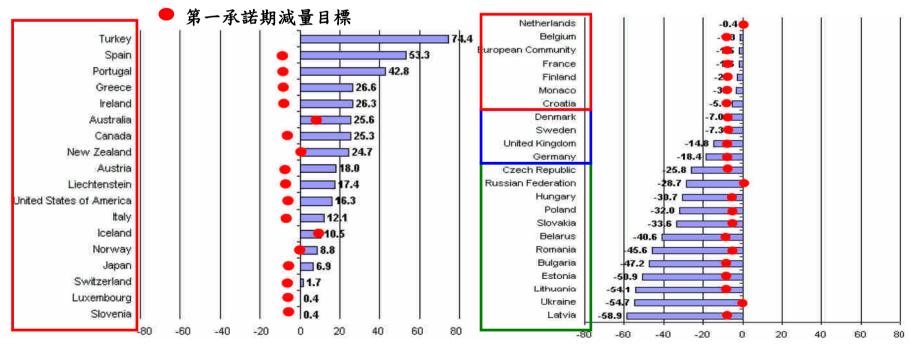
再生能源開發應用-太陽水力能

教師: 吳仁明 助理教授

再生能源

- 再生能源
- 太陽能
- 水力
- 風力
- 地熱
- 海洋能
- 生質能

討論


- 傳統能源將逐漸改為再生能源?
- •何謂太陽能?
- · 台灣適不適合水力發電?

一、全球溫室氣體減量趨勢

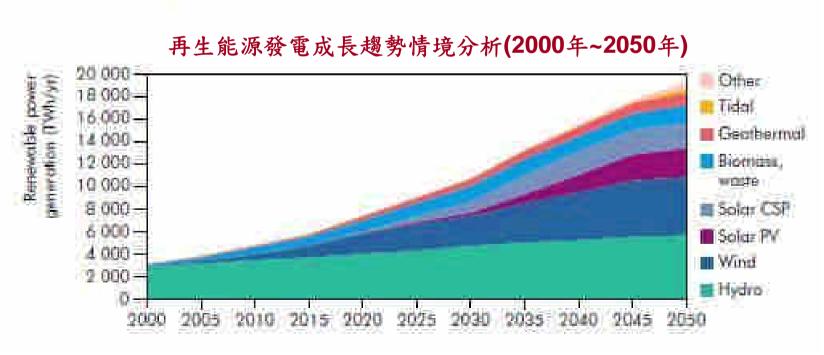
■ 京都議定書

- 1.1997年12月公約第三次締約國會議通過京都議定書,規範38個工業化國家與歐盟,應在2008-2012年將溫室氣體排放降至1990年水準平均再減5.2%。
- 2.規範對象為附件一國家(Annex I),採差異減量目標,以1990年排放水準為基準。

附件一國家中以德國、英國減量最具成效,已達成京都目標。

資料來源: FCCC/SBI/2007/30,National greenhouse gas inventory data for the period 1990–2005, 24 October 2007. 工研院(2008),聯合國氣候變化網要公約整體因應策略研析

二、全球再生能源發展趨勢


- 2004~2030年能源需求, IEA預估年均成長率為 1.6%
- 天然氣、水力及其他再生能源之平均成長率均高於2%

(百萬噸油當量)

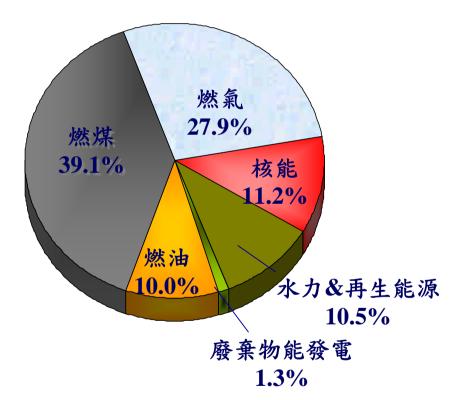
	2004	2010	2015	2030	2004-2030*
煤炭	2,773	3,354	3,666	4,441	1.8%
石 油	3,787	4,366	4,750	5,575	1.3%
天然氣	2,311	2,686	3,017	3,869	2.0%
核能	718	775	810	861	0.7%
水力	243	280	317	408	2.0%
生質能	1,172	1,283	1,375	1,645	1.3%
其他再	55	99	136	296	6.6%
生能源					
合計	11,059	12,842	14,071	17,095	1.6%

^{*:}年平均成長率 資料來源:IEA, World Energy Outlook 2006

- 依IEA2008年能源技術評析情境分析,預估再生能源發電占總發電量 比例將由2005年的18%提升至2050年的46%。
 - 水力發電全程發展平穩。
 - 2020年之前,再生能源發電主要為生質能與風能
 - 2020年以後,太陽能發電開始明顯增加。
 - 2050年水力發電、風力發電及太陽能發電為再生能源發電三大主要來源。

資料來源:2008Energy Technology Perspectives, IEA

■ 各主要國家再生能源發展目標(占總發電量比重)


國別	2004/2005	發展目標(目標年)		
丹麥	23.1% (2005)	29.0% (2010)		
德國	10.4% (2005)	12.5% (2010)		
法國	11.0% (2005)	21.0% (2010)		
荷蘭	6.9% (2005)	9.0% (2010)		
比利時	1.8% (2005)	6.0% (2010)		
義大利	15.3% (2005)	25.0% (2010)		
英國	4.1% (2005)	10.0% (2010)		
歐盟-25國	13.7% (2004)	21% (2010)		
日本	占總初級能源供給3.2%(2005),不含廢棄物3.0%。	12,320千瓩(2010)占總初級能源供給7.0%(2010)		
美國	占總初級能源供給4.7%(2005) ,不含廢棄物4.4%。	占總初級能源供給15% (2020),至2012年使用75 億加侖的生質酒精及生質柴油		
澳洲	占總初級能源供給5.5%(2005) ,不含廢棄物5.4%。	每年發電量9,500百萬度(2010)		
韓國	占總初級能源供給1.2%(2005) ,不含廢棄物0.5%。	占總初級能源供給5% (2011)		
中國	占總初級能源供給7%(2004)	占總初級能源供給20% (2020)		

資料來源:彙整IEA資料

台灣再生能源發展契機

一、發電結構

- (一)96年我國發電裝置容量38,105千瓩。
- (二)我國電力供給結構以燃煤 火力為主,占53.63%。
- (三)面對國內外溫室氣體減量 壓力,需發展各項低碳能 源,以降低發電部門CO₂ 排放。

2007年 發電裝置容量

二、低碳能源目標

永續能源政策目標

效率

提高能源效率

未來8年每年提高能源效率2%以上,使能源密集度於2015年較2005年下降20%以上;並藉由技術突破及配套措施,2025年下降50%以上。

潔淨

發展潔淨能源

1.全國二氧化碳排放減量,於2016年至2020年間回到2008年排放量,於2025年回到2000年排放量。

占比由40%增加至

2025年的55%以上。

穩定

確保能源供應穩定

建立滿足經濟發展目標的能源安全供應系統。

三、再生能源發展目標

積極發展無碳再生能源,有效運用再生能源開發潛力,於2025年占發電系統的15%。

以風力發電、太陽光電、生質能為主要推動項目,致力技術研發降低成本及提高設置誘因,並輔以推動其他再生能源發電如地熱、海洋能、氫能等,全面有效運用再生資源,以達目標。

我國再生能源推動現況與未來發展目標

年 再生能源	2007		2010		2025	
	裝置容量 (萬瓩)	比例 (%)	裝置容量 (萬瓩)	比例 (%)	裝置容量 (萬瓩)	比例 (%)
1. 慣常水力發電	192.2	5.0	216.8	5.7	250	4.4
2. 風力發電	28.16	0.7	98	2.6	300	5.3
3. 太陽光電	0.21	0.0	3.1	0.1	100	1.8
5. 生質能發電	63.7	1.7	74.1	1.9	140	2.5
4. 地熱發電	_	_	_	_	15	0.3
6. 燃料電池	_	_	_	_	20	0.4
7. 海洋能發電	_	_	_	_	20	0.4
合計	284.3	7.5	392	10.3	845	15.1
8.太陽能熱水器	1.66百萬平方公尺		2105百萬平方公尺		4.09百萬平方公尺	

台灣再生能源產業發展

再生能源發展-歐盟

- 1996的6%提升到2010年的12%
- 再生能發電量1997的14%提升到2010年的 22%
- 主要是生質能與風力發電

再生能源發展-美國

- 太陽能發電2020年達15%
- 2020年美國太陽能發電將佔全球50%
- 2020年再生能源發電(不計水力)增長56%

一、契機

- (一)在全球氣候變遷與節能減碳趨勢中,各國積極推動再生 能源與節約能源產業,台灣必須快速嵌入全球分工佈局, 開創台灣產業發展新領域。
- (二)台灣天然資源缺乏,但具極佳技術研發與製造能力,發展 新能源技術與產業,厚植產業基礎,可望成為能源技術與 生產大國。
- (三)透過能源產業發展計畫,深化能源技術發展,加速產業 技術渗透與升級,提升產業價值,引領台灣產業的低碳化 及高值化。

二、總體發展策略

(一)基本原則

將依三項原則發展新能源產業:

- 1.本諸「技術研究」、「產業發展」及「能源貢獻」同時並進。
- 2.依照台灣產業比較利益與優勢,順應市場發展趨勢。
- 3.以產業需求為政策導向,並協助產業克服問題。

(二)總體策略

- 1.法規建制:加速完成「再生能源發展條例」立法作業及「能源管理法」 修法作業,健全發展機制。
- 2.技術研發:加強投入關鍵技術研發,提高產品自製率,降低製造成本。
- 3.產業價值鏈建構:強化上中下游產業結構、建立具國際競爭力之產業 能量、進占國際市場。
- 4.示範推廣:對初期產品/技術提供示範推廣協助(例如太陽光電、燃料電池、LED應用等),擴大內需市場,帶動相關產業發展。
- 5.市場行銷:建立自有品牌行銷、推動創意應用。

再生能源發展目標

- 再生能源發電容量配比達10%為目標。
- 風力發電技術已趨成熟,為近程推動重點。輔以其他再生能源發電如地熱、生質能、水力發電等,全面有效運用再生資源。
- ·太陽光電具發展潛力,現階段以加強技術研發, 提升技術及扶植國內產業發展為主,使發電成本 更具經濟效益,並再全面推廣。
- ·持續推動太陽能熱水系統普及運用(截至93年底 為131萬平方公尺,每年預計以10萬平方公尺增 加)。

太陽能

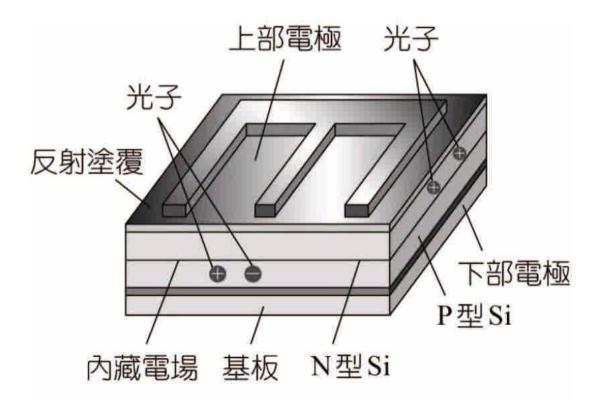
- · 太陽能是太陽內部連續不斷的核聚變反應所產生的能量。儘管太陽輻射到地球大氣層的能量僅為其總輻射能量(約為 3.75×10²⁶ W)的 22億分之一,但已高達 173,000 TW,相當於每秒鐘燃燒 500 萬噸煤。
- · 地球上的風能、水能、海洋溫差能、波浪能和生物質能以及部分潮汐能都是源自於太陽
- 地球上的化石燃料,如煤、石油、天然氣等,也是遠古以來貯存下來的太陽能。

太陽能 轉換太陽能的方式有兩種

1. 收集熱能

- 小規模的例如家用的太陽能熱水。
- 大規模的集熱式太陽能發電廠,將太陽光以 反射鏡集中,產生高熱使水汽化產生蒸汽, 進而推動渦輪發電機產生電力。

太陽能 轉換太陽能的方式有兩種


2. 轉換光能

- 利用太陽能電池板將光能直接轉換為電能。
- 較小型的如電子計算機上的太陽能電池板
- 較大型的如在房子貼上許多 太陽能板。

太陽能電池之發電原理

利用太陽光照射至半導體光電材料上,由太陽輻射提供的能量造成電子流動而直接轉化成電能

太陽能電池

· 在太陽電池元件研製方面,從自行在實驗室研製效率4%之小面積非晶矽太陽電池,經技術改良後將非晶矽太陽電池之效率提升至10.3%,已接近工業先進國家研製 12-13%單接面非晶矽太陽電池之技術水準。

太陽能

- 於偏遠及高山地區進行太陽光發電系統之推 廣應用。
- 太魯閣國家公園內設立太陽光發電系統供隧道照明、語音解說機電力及在奇萊、南湖大山設立太陽光電能避難示範小屋,並進行太陽能通訊系統研究發展。

太陽能優缺點

- 其優點有四

- 1.永續性的豐富能源。
- 2.取得能源容易。
- 3. 無污染。
- 4.不會增加地球的熱負荷量

- 亦有三項缺點

- 1.能量密度比較低。
- 2.太陽能是間歇性能源。
- 3.装置費用與成本較高。

太陽光能之應用

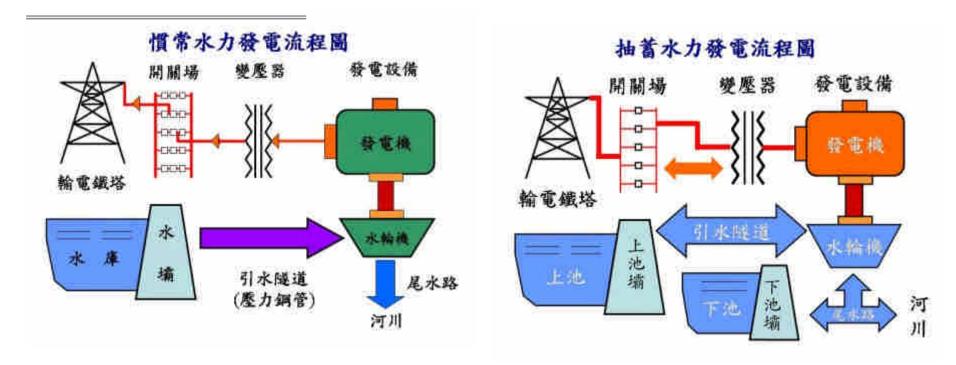
- 1.民生相關應用。
- 2.建築與家用電力應用。
- 3.交通與道路應用。
- 4.通訊系統應用。
- 5.農林漁牧與偏遠地區應用。
- 6.緊急與防災應用。
- 7.國防與太空應用。
- 8. 結合其他能源應用。

水力發電

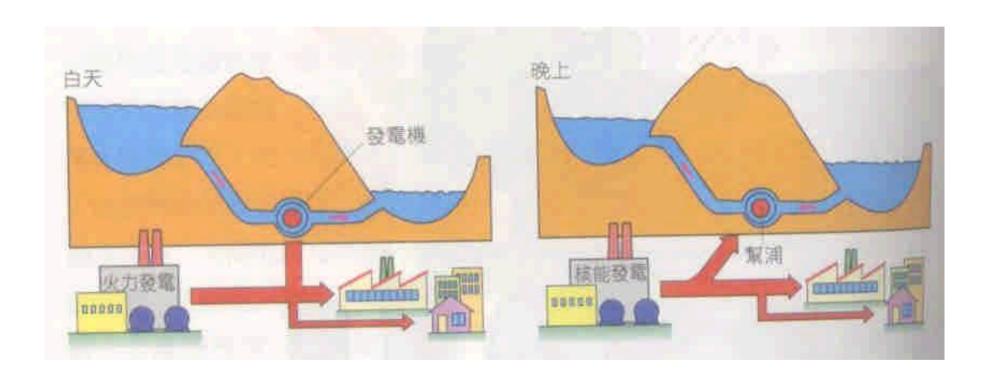
- · 運用水的<u>位能</u>是和<u>動能</u>轉換成電能來發電的 方式。以水力發電的工廠稱為水力發電廠, 簡稱水電廠,又稱水電站
- 水的位差在重力作用下形成動能,從河流或水庫等高位水源處向低位處引水,利用水的壓力或者流速衝擊水輪機,使之旋轉,從而將水能轉化為機械能,然後再由水輪機帶動發電機旋轉,切割磁力線產生交流電。

國內外水力發電之現況

一、台灣水力發電現況


- -台灣地區河川之特性為短、小、湍、急,具經濟價值之河川多已開發,水力蘊藏量估計 451 萬千瓦,主要分布於大甲溪、濁水溪等幾條主要河川。
- 截至94年12月,台灣大小水力電廠合計42 座,佔電力系統之13%。

國內外水力發電之現況


二、國外水力發電現況

- 全世界最大的水力,是中國大陸的三峽水電站,其次分別為加拿大、美國、巴西與俄羅斯,為水力發電前五名的國家,裝置容量30,475萬瓦,約佔全球的57.7%。


水力發電

抽蓄發電

明潭抽蓄發電

日月潭/觀光局照片

http://www.sunmoonlake.gov.tw/

